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1. 

In a recent article, a theory for dynamic analysis of beam structures traversed by uniform
partially distributed moving masses is developed [1]. Bernoulli–Euler beam theory is
applied. The solution is obtained by expressing the moving load as an infinite series and
the beam response is computed using the modal expansion method. While the development
is interesting, some statements, analysis results and conclusions are questionable and may
be misleading.

2. 

First of all, the assumption statement concerning the use of the Bernoulli–Euler equation
is inappropriate. Bernoulli–Euler beam theory cannot be applied simply because the beam
is of constant cross-section and mass distribution. If the slenderness ratio, r/L, is large,
where r is the radius of gyration and L is the beam length, or vibration of higher modes
is concerned, the use of classical Bernoulli–Euler beam theory cannot ensure sufficient
accuracy. In this case, Timoshenko beam theory, which takes into account the effects of
shearing deformations and rotary inertia, must be applied for accurate analysis. On the
other hand, the Bernoulli–Euler equation is still applicable for a beam with a non-uniform
cross-section and mass distribution, as long as the beam is slender, i.e., r/L is sufficiently
small, and only lower mode vibration analysis is involved.

The equation of motion, considering the effect of the moving mass, is incorrectly given.
As shown in equation (2), the term M 12y(x, t)/1t2 only partially describes the dynamic
effect of the moving mass. Since the mass is moving along a vibrating path, the velocity
of the moving mass is

ẏ(x, t)= (1y/1x)ẋ+ 1y/1t (1)

and the acceleration of the moving mass can be written as

ÿ(x, t)=
12y
1x2 ẋ2 +2

12y
1x 1t

ẋ+
1y
1x

ẍ+
12y
1t2 . (2)

The first term on the right side of equation (2) is the centripetal acceleration of the moving
mass; the second term is the well-known Coriolis acceleration; the third term is the
acceleration component in the vertical direction when the moving load speed is not a
constant; and the last term is the support beam acceleration at the point of contact with
the moving mass. All terms are absent in reference [1] except the last one. The dynamic
force, in addition to the static load due to moving mass weight, must be described as Mÿ,
where ÿ is given in equation (2).
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It is claimed that the development in reference [1] is applicable to beams with various
boundary conditions. However, it is known that for a beam with free boundary conditions,
the out-flow term must be considered [2], which is absent in reference [1]. For instance,
if analysis of cantilever beams, with the right end unsupported, traversed by distributed
moving mass is considered, the term describing the out-flow effect, which can be written
as (M/e)V(1y/1t+V 1y/1x) =x=L , must be taken into account.

The symmetry of the system response with respect to the mid-time of the motion does
not seem to have any practical importance. The response profile is also dependent on the
moving speed and the mass ratio M/mL. It was observed in reference [1] that increasing
the number of modes in the computation resulted in insignificant changes in calculating
the system response. The statement may be misleading and may yield erroneous results.
If the weight of the moving mass is small in comparison with that of the support beam
and the speed of movement is low, the conclusion may be applicable. Otherwise, more
modes must be included for accurate analysis, especially when the computation of stress
is required. Stress computation involves higher derivatives of the displacement. To
calculate the bending stress requires the computation of bending moment, which involves
the second derivative of displacement, while calculation of shear stress needs knowledge
of the shear force, which is a function of the third derivative of the displacement.
Therefore, convergence will be much slower for stress computation than for displacement
calculation, and more modes will be required to ensure accuracy for stress analysis.
Moreover, design of the support structure based on the information obtained during the
forced response period, as was done in reference [1], is rather risky. As can be seen in
Table 1, where Dm1 denotes the maximum dynamic deflection considering the forced
response period only and Dm2 is obtained by considering further the free response region,
where the moving mass has left the beam span, Dm2 may deviate significantly from Dm1 for
higher moving speeds, indicating the inadequacy of considering the system response only
for the forced vibration period when the moving mass is inside the beam span. For the
present case, since the span of the distributed mass is very small when compared with that
of the beam, Dm1 and Dm2 were computed using the moving concentrated mass model,
which can be easily adapted from the work by Lin and Trethewey [3], in which a general
treatment of various moving load problems was presented. Dm , as given in reference [1],
is supposed to be approximately equal to Dm1. However, as indicated earlier, the dynamic

T 1

Variation of maximum dynamic deflection with the velocity of the load

V (km/h) Dm (cm) [1] Dm1 (cm) Dm2 (cm)

12 7·2 7·0 7·0
24 7·8 7·5 7·5
36 8·4 8·2 8·2
48 10·6 10·2 10·2
60 11·9 11·8 11·8
72 12·3 13·1 13·2
84 12·6 14·4 15·2
90 12·7 15·1 15·7
96 12·6 15·9 16·1

108 12·3 17·4 17·4
120 11·6 17·7 18·2
132 10·7 16·8 18·3
144 10·3 15·7 18·0
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T 2

Impact factors for the central displacement of a simply supported beam traversed by a moving
mass load

M/mL Tf/t ( yd /ys )1 ( yd /ys )2

0·2 0·5 1·319 1·319
1·0 1·824 1·824
1·5 1·917 1·917
2·0 1·731 1·797

2 0·5 1·844 1·860
1·0 3·154 3·428
1·5 1·923 3·734
2·0 1·106 3·521

4 0·5 2·396 2·769
1·0 2·934 4·931
1·5 1·337 4·966
2·0 0·702 4·466

8 0·5 4·367 4·451
1·0 2·092 7·238
1·5 0·809 6·309
2·0 0·402 5·258

effect of the moving mass is incorrectly described in reference [1] and significant error can
be found for higher moving speeds.

Another important issue to be addressed is that the mass ratio, M/mL, plays an
important role in assessing the dynamic characteristics of the moving mass problems. In
Table 2 are shown the impact factors, defined as the maximum dynamic displacement, yd ,
at the beam center normalized by the maximum static displacement, ys , with respect to
various mass ratios and moving speeds. In Table 2, (yd /ys )1 denotes the impact factor
obtained by considering the forced response period only, i.e., when the moving mass is
inside the beam span; whereas (yd /ys )2 represents the impact factor computed from the
overall response period, including free response when the moving mass has left the beam
span; Tf is the fundamental period of the simply supported beam; and t is the time required
for the moving load to across the beam span. A total of 2t time response was evaluated.
As can be seen in Table 2, significant deviation of (yd /ys )2 from (yd /ys )1 can be observed
as the mass ratios and moving speeds are increased. The case with a higher mass ratio
results in a significantly larger dynamic impact on the support structure than that with a
lower one. It is worth noting that the information given in Table 2 further demonstrates
the need to include the free response region in examining the dynamic characteristics of
the system. The free response is found to be of greater interest than the forced response
for moving mass problems with a large mass ratio, M/mL, and a higher speed of
movement. This peculiar phenomenon may be explained by noting that during the forced
response region, the heavy moving mass prevents a large amplitude of vibration since the
mass is part of the overall dynamic system. However, once the mass exits the beam span,
the energy imparted by the heavy moving mass during the loaded period is taken by the
support beam alone, which results in large vibration. Higher modes participation was
found to be significant, contrary to the case of moving concentrated force problems, in
which the fundamental mode predominates in computing the dynamic response.

The ‘‘critical speed’’ of the moving load is defined in reference [1] as the speed at which
the maximum deflection occurs. In conventional dynamics notation, the critical speed
refers to the speed at which resonance or a transition from a stability to an instability
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region occurs. For analysis of a simply supported beam traversed by a moving
concentrated force, the critical speed, or resonance speed, occurs when the travel time of
the moving load to across the beam span is half of the fundamental period of the support
structure [4]. The corresponding maximum dynamic deflection was found to be 1·548 times
the static deflection. However, although the mathematical description shows that
resonance occurs, it is valid only in the forced response region. The true maximum dynamic
deflection was found to be 1·732 times the static deflection when the travel time is 0·81
times the fundamental period of the beam. Care should be taken to differentiate between
the critical speed, or resonance speed, and the maximum response speed. Similar concerns
apply to the other types of moving load problems.

3. 

Bernoulli–Euler beam theory is applicable for the lower mode vibration of slender
structures, but should be disregarded if the beam is of constant cross-section and mass
distribution. In describing the dynamic effect of the moving mass load, the total differential
must be considered since the mass is moving on a vibrating path. The dynamic response
of elastic structures traversed by moving mass loads is a very complicated function of both
the mass ratio between the moving mass and the support structure and the speed of the
moving load. Any analysis of moving load problems must address fully the effects of these
parameters to extract useful information for engineering design and to avoid possible
misleading conclusions. For larger mass ratios, M/mL, and higher moving speeds, the free
response can be more important than the forced response in assessing the dynamic
behavior of the support beam, and higher mode participation is significant in computing
the dynamic response. Also, the contribution of higher modes cannot be ignored when
stress analysis is concerned, due to slower convergence characteristics.
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